

Formulation Strategies to Enhance Health and Nutrional Value of Foods

Prof. Paola Pittia Facoltà di Bioscienze e Tecnologie Agro-alimentari ed ambientali Università di Teramo <u>ppittia@unite.it</u>

> Amman (Jordan) 28° April 2018

Who I am

Ass. Prof. In Food Science and Technology Since 2003 @ University of Teramo (previously @ Univ. Udine)

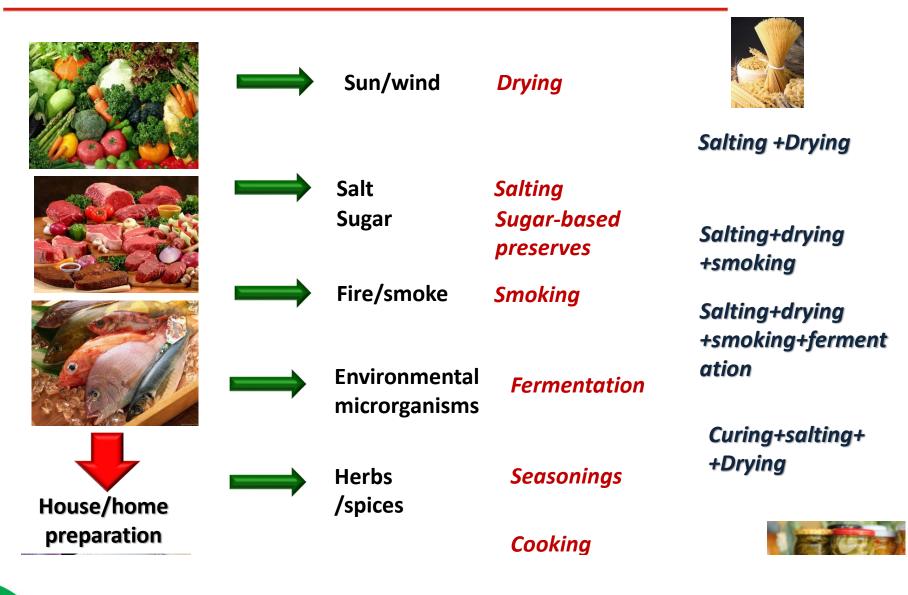
Coordinator Master Degree in Food Science and Technology (international)

Vice-Rector of Internationalisation and Joint Study programmes of University of Teramo

President of ISEKI-Food Association

Research expertise

- Food quality and processing
- New product design and formulation
- Physical properties of foods


Fresh

Food preparation /traformation/preservation

Processing/transformation

- shelf-life (migration/wars, discoveries....)
- safety
- Improvement quality and sensory properties

Innovation in the food sector: drivers

- Advancements in science and technology

- Identifcation and detection of new foodborne pathogens a
- Evaluation of presence and concentration of contaminants and undesired chemicals, at nano level.
- New applied sciences (nanomaterials)

- Societal and economic changes

- Globalisation (population, food, cultures)
- Change of the importance of the quality attributes as response of modern consumers' expectations.
 - Increased relevance of healthy, sensory and convenience aspects (nutritional value and food safety: intrinsic aspects).

Innovation in the food sector: drivers

- Critical points of conventional products (e.g. thermal processes)
 - Main degradation of food nutrients
 - Change quality properties (e.g. textural and physical characteristics of food products)
 - Reduced consumer acceptability.

Negative impact of conventional processes and formulation strategies

- Intense thermal treatments (sanitisation, drying):
 - Degradation of thermolable biomolecules and nutrients
 - Triggering and development of thermo-induced reactions and formation of unhealthy compounds, e.g.
 - Maillard reaction: acrylamide,
 - Frying: fat oxidation compounds
- Salting and ripening of meat and dairy products (empiric process approach)
 - Excessive use of salt
 - Potentially toxic compounds (nitrosamines)

- Use of sugar in fruit preserves

- Excessive use of sugar (energy intake, cariogenicity)

Negative impact of conventional processes and formulation strategies

NATURALLY PRESENT

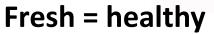
- Cholesterol
- Caffein
- Allergenic substances (mainly proteins)
- Gluten

ADDED in FORMULATED foods

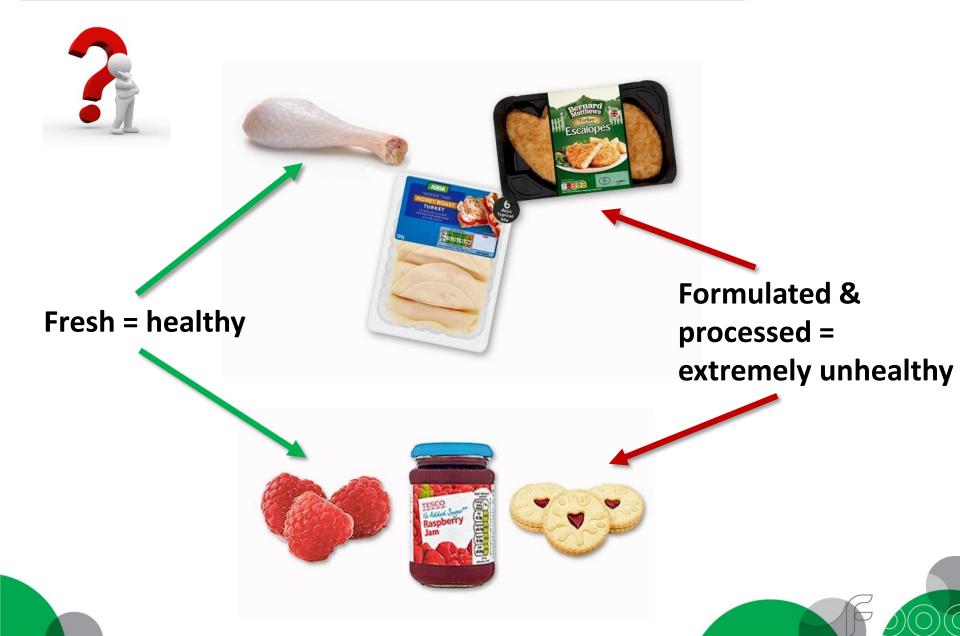
- Additives
- Artificial colouring and flavouring agents
- preservatives

Ultra-processed food (Monteiro, 2015)

Processing of substances derived from foods (by e.g. baking, fryng, extruding, moulding, re-shaping, hydrogenation and hydrolysis. They generally include a large number of additives such as preservatives, sweeteners, sensory enhancers, colorants, flavours and processing aids, but little or no whole food. They may be fortified with micronutrients. The aim is to create durable, convenient and palatable ready-to-eat or ready-to-heat food products suitable to be consumed as snacks or to replace freshly prepared food-based dishes and meals

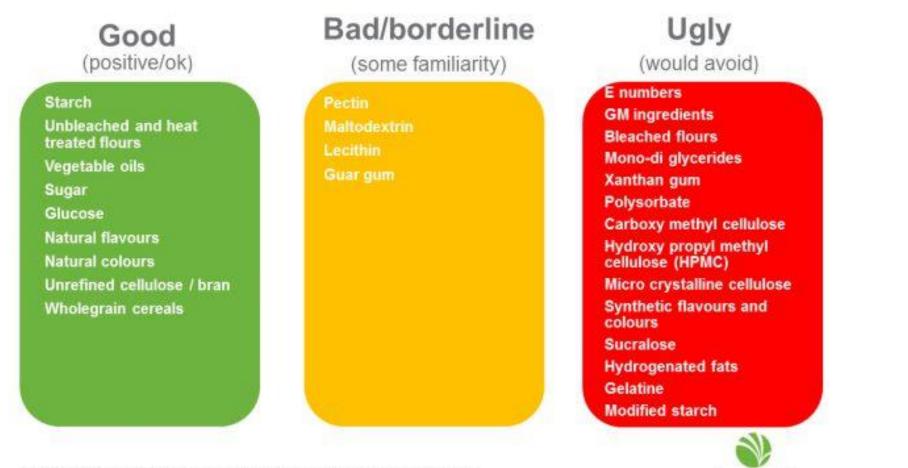

Monteiro, CA; Moubarac, JC; Cannon, G; Ng, SW; Popkin, B (2013). "Ultra-processed products are becoming dominant in the global food system". Obes Rev. 14 Suppl 2: 21–8.

An «extreme» definition of processed foods

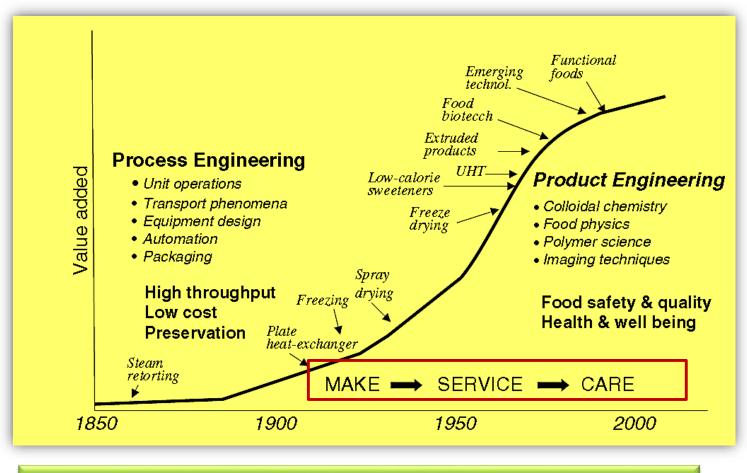


An «extreme» definition of processed foods

- Few ingredients; avoid lengthy ingredient statements
- Ingredient names are recognizable; avoid unfamiliar names
- Transparency to consumers
- Absence of artificial ingredients
- Minimally processed
- Natural
- Allergen-free
- Uncluttered label



«Clean label» approach


Ingredion

Source: Dragon Brands; Consumer Research, Commissioned by Ingredion 2007 (UK DE and USA) and 2010 (DE and FR)

Products and food processing evolution

Aguilera, 2006

Natural & unprocessed

Nutritional balance & specific health benefits

Reduced ecological impact and fair trade

Convenience and new consumption occasions

Affordability

Modified from Palzer, ICEF 12 conference 2015

Balanced presence of nutrients to deliver the desired/needed energy intake

Reduction/replacement of undesired ingredients and macro-/micronutrients (nutrition, health aspects)

Revision of formulation Diversification

Natural & unprocessed

Nutritional balance & specific health benefits

Reduced ecological impact and fair trade

Convenience and new consumption occasions

Affordability

Modified from Palzer, ICEF 12 conference 2015

Presence and content of health promoting compounds by - nature - processing (conventional/innovative) - processing optimisation

Presence and content of health promoting compounds - fortification /enrichment - formulation (mix)

 SUGAR/mono- di-saccharides (not only sweeteners....)

AIM: decrease energy intake, improve healthy potential, nocariogenicity, low glycemic index)

CONSTRAINTS of REDUCTION/SUBSTITUTION

- need of addition of bulking agents (intensive sweeteners)
- decreased shelf-life due to lower water binding capacity of the
- alternative sweeteners (aw)
- effect on taste
- effect on other sensory quality (colour, aroma, texture)

 SUGAR/mono- di-saccharides (not only sweeteners....)

STRATEGIES: Use of alternative sweeteners (low/reduced calories, intensive)

Use of natural syrups (clean label, no/low sucrose)

 SUGAR/mono- di-saccharides (not only sweeteners....)

- SALT (Sodium chloride, NaCl)

(not only saltiness....)

AIM: decrease risk of blood deseases , ipertension)

CONSTRAINTS OF REDUCTION/SUBSTITUTION:

- decreased shelf-life due to lower water binding capacity of the alternative salting agents (aw)
- effect on taste
- effect on other sensory quality (aroma, texture)

- SALT (Sodium chloride, NaCl)

(not only saltiness....)

AIM: decrease risk of blood deseases , ipertension)

STRATEGIES

- Processing approaches: revision/optimisation of the conventional tecnological actions in salting, curing, fermentation process order to reduce (up to the limits) the salt applied (Martuscelli et al. 2015, 2017

- Use of alternative salting agents (single/mix e.g. KCl, aminoacids....)

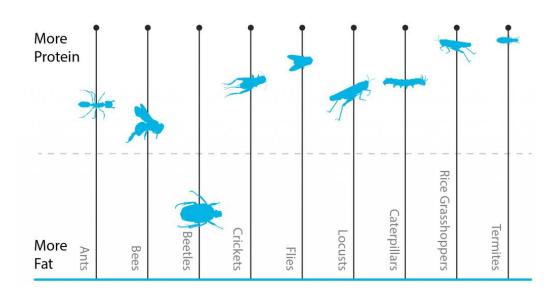
- Use of mix of herbs and spices (naturally containing minerals, salts

- PROTEINS

- of vegetal origin (meat proteins substitutes, meat analogues) (food for consumers with dedicated diets-vegan/vegetarians)
- No gluten (celiac desease)

<u>AIM</u>: products for specific food consumers and diversification

- Meat/egg protein alternatives
 - Soia proteins
 - Legume proteins (peas, bean, chickpea)
 - Seeds proteins (almond, hemp)
- New protein sources Insects!
 - Algae



Coconut cake with cricket flour

TECHNOLOGICAL FUNCTIONALITY HAS TO BE PROPERLY TESTED UNDER THE REQUESTED USES AND FORMULATION

- **PROTEINS**

Insects: http://www.proteinsect.eu/

Nutrition Facts

Per 100 grams of cooked weight	Mealworms	Crickets
	Roasted	Boiled, roasted
Calories	436	472
Protein	55.43 g	58.51 g
Fat	18.9 g	24.0 g
Saturated	4.13 g	8.48 g
Monounsaturated	6.48 g	5.14 g
Polyunsaturated	7.33 g	9.09 g
Omega-6	7.03 g	6.28 g
Omega-3	0.297 g	2.81 g
Carbohydrates	15.4 g	8.4 g
Sugars	0.5 g	0.4 g
Dietary fiber	8.7 g	6 g
Cholesterol	149 mg	228 mg
Vitamin A	620 IU	no data
Calcium	810 mcg	1100 mcg
Iron	37 mcg	25 mcg
Potassium	11 mg	11 mg
Sodium	1.8 mg	3.1 mg

- **PROTEINS**

Arthospira (Spirulina) platensis : blue-green microalga (cyanobacterium) which belongs to the Lichinaceae Family.

Phycocyanin: up to 80% of the protein fraction

- PROTEINS

Applications

- Foods ("colouring foodstuff", energy enhancer)
- Nutraceutical
- Cosmetics
- **Diagnostic**, clinical assays (fluorescent probe)

Properties

Antioxidant

- •Free Radical-scavenging activity
- Inibition of lipid peroxidation

Medical and Pharma

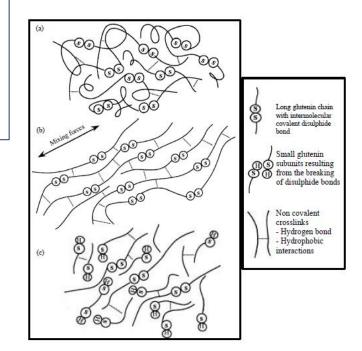
- Hepatoprotective
- •Anti-inflammatory
- neuroprotective
- Immuno-system enhancer

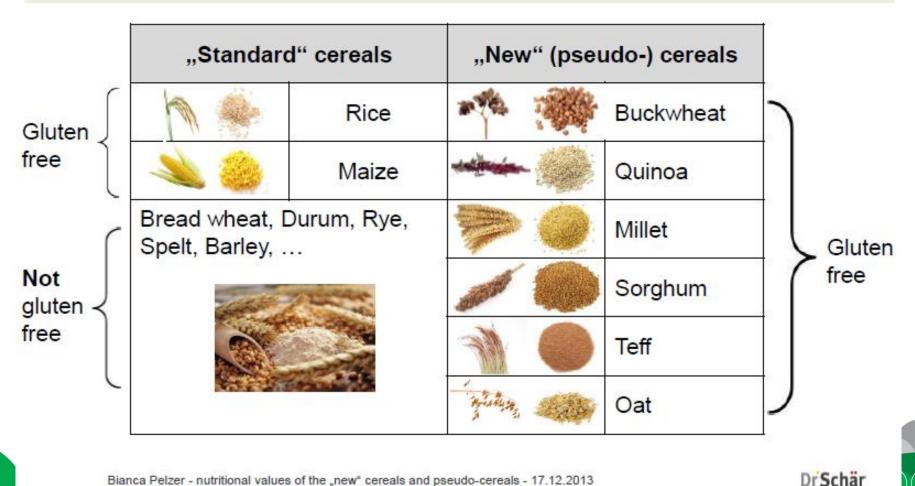
UNIVERSITÀ

DI TERAMO

- GLUTEN FREE (celiac desease)

Gluten is the proteic three dimensional elastic structure that originates during kneading of cereals containing glutein proteins (gliadins and glutenins) in presence of water.

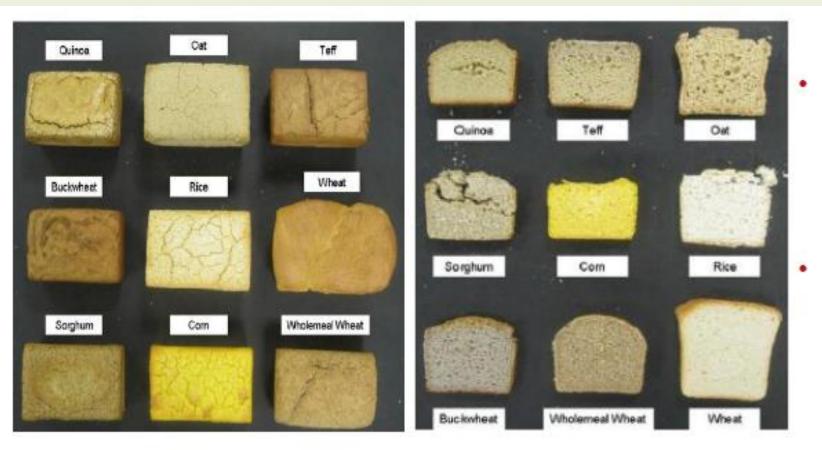



Fig. 3: Molecular interpretation of gluten development (a) beginning of mixing, (b) optimum development and (c) overmixing (Letang et al., 1999)

CONSTRAINS: causes celiac desease with main health symptoms and injuries in the bowl and side-effects

- GLUTEN FREE (celiac desease)

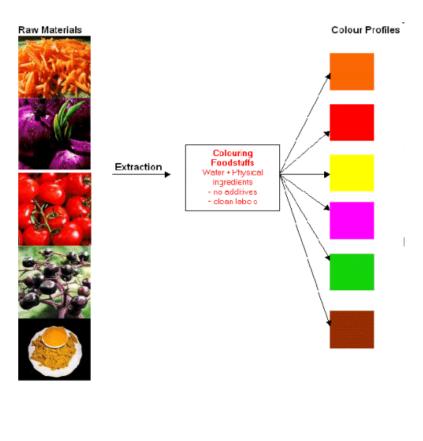
Use of pseudo-cereals, starches + able to develop a three dimensional network similar to gluten



Bianca Pelzer - nutritional values of the "new" cereals and pseudo-cereals - 17.12.2013

- GLUTEN FREE (celiac desease)

Use of pseudo-cereals, starches + able to develop a three dimensional network similar to gluten



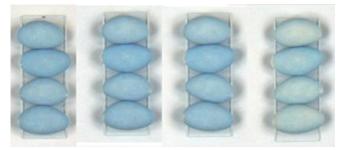
- AROMA AND FLAVOUR

AIM: to avoid use of E-labelled additives

STRATEGIES: Use of natural extracts (plants, fruits, vegetables, essential oils

CONSTRAINTS: COLOURING EXTRACTS: poor STABILITY, with destabilisation correlated to discoloration/bleaching Matrix & environmental destabilising factors:

- pH
- Temperature
- Light



Temperature & light

Temperature & pH

> NEED OF IDENTIFICATION STABILISING PROCESSING AND FORMULATION ACTIONS TO PREVENT DISCOLORANTION/LOSS QUALITY

Freshly made 10 d

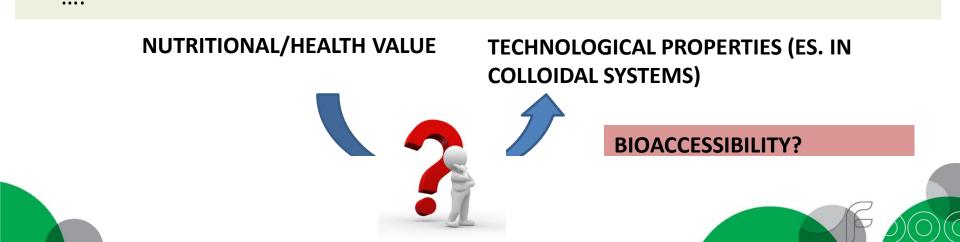
20 d 60 d Light, 60% RH

- FORTIFICATION/ADDITION DESIRED COMPOUNDS

AIM: to enhance by formulation the nutritional and health potential of the final product

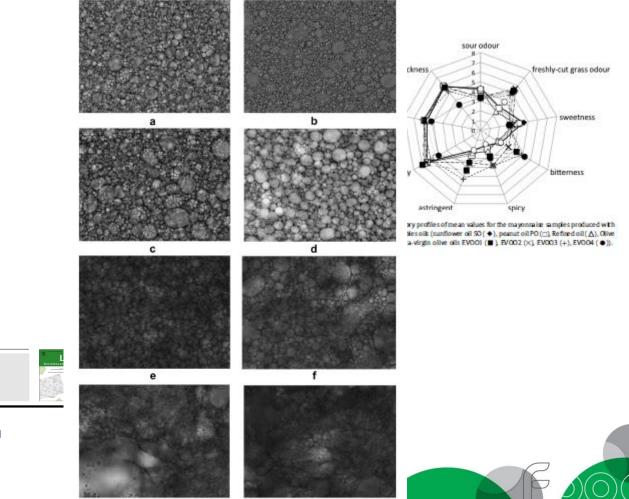
BIOMOLECOLES / COMPOUNDS OF MAIN INTEREST

- Phytochemicals
- Phenolic compounds (extracts, pure compounds)
- Minerals
- Vitamins
- Fibers
- Pre-biotics
- Probiotics
- Essential aminoacids, fatty acids



- FORTIFICATION/ADDITION DESIRED COMPOUNDS

BIOMOLECOLES / COMPOUNDS OF MAIN INTEREST


- Phytochemicals
- Phenolic compounds (extracts, pure compounds)
- Minerals
- Vitamins
- Fibers
- Pre-biotics
- Probiotics
- Essential aminoacids, fatty acids

- FORTIFICATION/ADDITION DESIRED COMPOUNDS

Role of phenolic compounds in emulsified systems (case study)

 P0
 S0
 O0
 R0

 EVO01
 EVO02
 EVO03
 EVO04

 OU
 OU
 OU
 OU

 KT- Food Science and Technology txx (2014) 1-7
 Contents lists available at ScienceDirect

Contents lists available at ScienceDirect
LWT - Food Science and Technology
journal homepage: www.elsevier.com/locate/lwt

Physical and structural properties of extra-virgin olive oil based mayonnaise

Carla Di Mattia $^{\rm a,\,*},$ Federica Balestra $^{\rm b},$ Giampiero Sacchetti $^{\rm a},$ Lilia Neri $^{\rm a},$ Dino Mastrocola $^{\rm a},$ Paola Pittia $^{\rm a}$

- UNRAVEL HEALTH POTENTIAL OF NATURAL, UNDERESTIMATED SOURCES AND BY-PRODUCTS

AIM: To add-value to biodiversity and traditional/old raw as healthy ingredients

materials

To recover healthy coumpounds from waste

Contents lists available at ScienceDirect

Journal of Food Composition and Analysis

Original Article

Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (*Castanea sativa* Mill.) ecotypes from Italy

L. Neri, G. Dimitri, G. Sacchetti^{*}

Table 4

Means and standard deviations of the organic acids, polyphenols concentration and antioxidant activity of chestnuts and ANOVA analysis of the effects of ecotype and harvesting year.

Ecotype	Year	Malic acid (%d.w.)	Ascorbic acid $(%_{dw.})$	Total polyphenols $(\mu g GAE g_{dw.}^{-1})$	Antioxidant activity	μ moles Trolox eq. $g_{d.w.}^{-1}$)
VC	2003	0.224 ± 0.008	0.032 ± 0.009	87.2 ± 6.5	6.49 ± 0.19	
VC	2004	0.290 ±0.120	-	89.2 ± 7.3	5.49 ± 0.21	
CDR	2003	0.330 ± 0.094	0.059 ± 0.008	133 ±8.5	8.15 ± 0.16	
CDR	2004	0.152 ± 0.002	0.028 ± 0.002	105 ± 7.6	4.77 ± 0.34	
MR	2003	0.188 ± 0.005	0.078 ± 0.007	101 ± 6.2	6.00 ± 0.49	
MR	2004	0.181 ± 0.004	0.128 ± 0.010	157 ± 20	5.59 ± 0.40	
F	Ecotype (E)	n.s.	123.36***	24.51***	6.77*	
F	Year (Y)	n.s.	n.s.	n.s.	140.75***	
F	$E\timesY$	6.05*	90.71***	24.56***	35.8***	

d.w.: dry weight; n.s.: not significant. Significance level: *p < 0.05; **p < 0.01; ***p < 0.001.

Valorisation of biodiversity

- UNRAVEL HEALTH POTENTIAL OF NATURAL, UNDERESTIMATED SOURCES AND BY-PRODUCTS

Apples (from autoctonous cultivars)

International Journal of Food Science and Technology 2008, 43, 797-804

Original article

Influence of processing and storage on the antioxidant activity of apple derivatives

Giampiero Sacchetti,1* Emiliano Cocci,2 GianGaetano Pinnavaia,2 Dino Mastrocola1 & Marco Dalla Rosa2

1 Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via Carlo Lerici 1, Mosciano Stazione, 64023 Teramo, Italy 2 Campus di Scienze degli Alimenti, Università degli Studi di Bologna, Sede di Cesena, Piazza Goidanich 60, 47023 Cesena, Italy

Apple variety	Polyphenols	Ascorbic acid	TEAC (μmol Trolox eq. g ⁻¹ _{d.w.})	
	(mg g ⁻¹ _{d.w.})	(mg 100 g ⁻¹ dw.)		
Campanino	4.99 ± 0.10	16.43 ± 0.73	48.97 ± 1.35	
Commercio	2.21 ± 0.67	11.56 ± 0.64	7.17 ± 0.35	
Decio	3.01 ± 1.19	9.02 ± 0.75	13.30 ± 3.09	
Durello	4.34 ± 0.61	12.66 ± 0.30	26.91 ± 3.67	
Golden Delicious	2.65 ± 0.08	9.89 ± 0.43	15.17 ± 1.27	
Puppino	5.29 ± 1.63	18.78 ± 1.17	44.20 ± 4.24	
Verdone	3.95 ± 1.34	14.29 ± 0.48	35.18 ± 2.87	

Table 1 Antioxidants content and Troloxequivalent antioxidant capacity (TEAC) $(\pm S.D.)$ of fresh fruits

- UNRAVEL HEALTH POTENTIAL OF NATURAL, UNDERESTIMATED SOURCES AND BY-PRODUCTS

• Apples (from autoctonous cultivars)

International Journal of Food Science and Technology 2008, 43, 797-804

Original article

Influence of processing and storage on the antioxidant activity of apple derivatives

Giampiero Sacchetti,1* Emiliano Cocci,2 GianGaetano Pinnavaia,2 Dino Mastrocola1 & Marco Dalla Rosa2

1 Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via Carlo Lerici 1, Mosciano Stazione, 64023 Teramo, Italy 2 Campus di Scienze degli Alimenti, Università degli Studi di Bologna, Sede di Cesena, Piazza Goidanich 60, 47023 Cesena, Italy

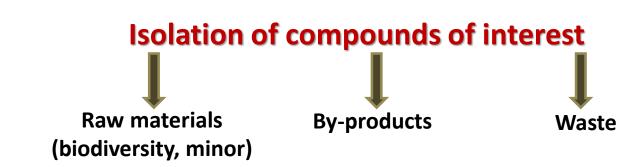
	Dried cubes		Purees	
Apple variety	TEAC (μmol Trolox eq. g ⁻¹ _{d.w.})	Δ h° (%)	TEAC (μmol Trolox eq. g ⁻¹ _{d.w.}) Δ h ° (%)	
Campanino	13.80 ± 2.45	19.2 ± 0.45	11.74 ± 0.85	9.1 ± 0.73
Commercio	5.71 ± 0.43	13.2 ± 0.44	6.86 ± 0.98	18.1 ± 0.43
Decio	3.87 ± 1.12	17.9 ± 0.49	2.33 ± 0.10	15.3 ± 0.41
Durello	20.30 ± 2.03	15.7 ± 0.29	8.29 ± 1.17	9.2 ± 0.59
Golden Delicious	6.32 ± 0.37	9.9 ± 0.27	4.56 ± 0.36	-3.0 ± 0.42
Puppino	16.58 ± 4.29	12.6 ± 0.47	9.37 ± 1.04	6.0 ± 0.70
Verdone	30.01 ± 3.51	14.8 ± 0.15	8.12 ± 0.39	17.4 ± 0.24

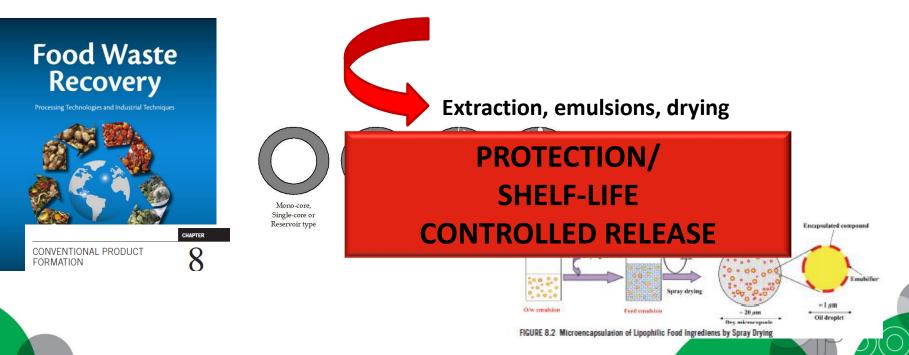
Valorisation of biodiversity

- NEW INGREDIENTS FROM ISOLATED/EXTRACTED BIOCOMPOUNDS ISOLATED

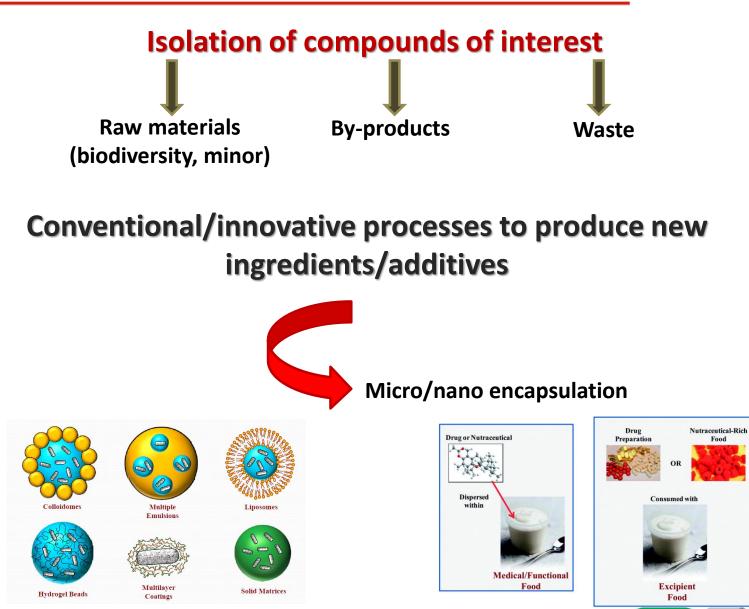
Raw materials (biodiversity, minor) By-products Waste

Food Waste Recovery


Processing Technologies and Industrial Technique


Paola Phtia*, Adem Ghastallaou!** Faculty of Bioncience and Technology for Food, Agriculture and Environment, University of Terano, Iaiy, "BioLyMAA (Biotoginistris et Dynamique Microbienne aux Instructures Alumentaries), Bourg on Tensas, France Table 8.1 General Technological Functionalities of the Main Compounds Present in Food Waste and By-Products

Compound	Origin/Source of Waste and By-Products	Solubility	Technological/Quality Functionality
Pectin	Fruit and vegetable extracts	Water	Gelling and structuring Surface activity
Proteins	Meat (animal) Milk Eggs Vegetables (legumes) Seeds	Water Amphiphilic behavior	Emulsifying and foaming activity Gelling and structuring Binding (aroma, lipids) Antioxidant properties
Peptides and amino acids	Meat (animal) Milk Vegetables Seeds	Water Amphiphilic behavior	Solubility Emulsifying and foaming activity Bioactivity Health properties
Oligosaccharides	Fruit and vegetables	Water	Solubility Healthy properties
Polysaccharides	Fruit and vegetables	Water	Water-holding and binding properties Gelling and structuring
Hydrocolloids and gums	Vegetables, seeds	Water	Gelling and structuring Water-holding capacity
Oils and fats	Animal, fish, seeds	Oil	Structure forming Binding (aroma, proteins) Sensory properties
Phenolic compounds	Plant and fruit extracts	Water-to-oil depending on chemical structure and molecular weight	Antioxidant Health properties Surface activity Sensory properties (color and taste)
Phytochemicals	Plant extracts	Water-to-oil depending on chemical structure and molecular weight Some have amphiphilic behavior	Solubility Surface activity Emulsifying properties Healthy properties
Pigments	Plant and fruit extracts Algae and seaweeds extracts Meat (myoglobin)	Water-to-oil depending on the compound	Color and sensory properties
Aroma compounds and essential oils	Plant and fruit extracts	Water-to-oil depending on the compound	Aroma and sensory properties



Conventional/innovative processes to produce new ingredients/additives

Any change/action on processing and formulation of a beverage requires an optimisation step to identify factors affecting its expected quality, safety and stability. Stability

- microbial
- enzymatic
- physical (e.g. colloidal)
- chemical (e.g. oxidation)

Any change/action on processing and formulation of a food requires an optimisation step to identify factors affecting its expected quality and stability.

Formulation

- selection ingredients and additives
- recipe/formulation

Processing main factors:

- Technological parameters
- Formulation properties
 - pH (high, low acidity)
 - Ingredients (nutrients, natural/added antioxidants....)
 - expected shelf-life (stability: microbial, enzymatic, ...)

Thank you very much...

Any Question?

Paola Pittia ppittia@unite.it

