

FOODQA TRAINING

DAY 3: 31 JANUARY 2018 DISINFECTION AND BIOPRESERVATION

PROF. ANTONELLO PAPARELLA apaparella@unite.it Teaching material: No copying without permission

ANTIMICROBIAL AGENTS

Physical agents: e.g. heat, radiations, etc.

Orbital Agents (disinfectants): gases, liquids, solids

THE IDEAL DISINFECTANT

- Wide antimicrobial spectrum
- High activity
- Activity in presence of organic compounds and soaps
- **Rapid** action
- Long-lasting action
- Chemical stability
- Low toxicity in working conditions

THE IDEAL DISINFECTANT

No odour/taste given to foods Noncorrosive for metals Nonstaining for surfaces High water solubility Compatibility with sewage treatment plants Easy application Easy rinsing Economical

FACTORS AFFECTING THE

EFFECTIVENESS OF DISINFECTANTS

- Concentration
- Contact time
- Temperature
- рН
- Formulation
- Interfering substances
- Type of microorganisms (species and strain)

MECHANISM OF ACTION

Alteration of permeability of cytoplasmic membrane

Damage to proteins or nucleic acids Alteration of permeability of cytoplasmic membrane

Antimicrobials can damage membrane lipids and proteins, thus causing a loss of cytoplasmic material.

Damage to proteins

The functional properties of proteins depend on their 3-dimensional structure. Antimicrobials can break hydrogen bonds, covalent bonds, and SS-bonds.

Damage to nucleic acids

Heat, radiations and disinfectants can damage nucleic acids and hamper cell growth or modify physiological metabolic functions (e.g. enzyme synthesis).

ANTIMICROBIAL RESISTANCE OF MICROORGANISMS

MAX RESISTANCE Bacterial endospores Mycobacteria Protozoan cysts Protozoan vegetative forms Gram-negative bacteria Fungi Nonenveloped viruses Gram-positive bacteria MIN RESISTANCE Enveloped viruses

ANTIMICROBIAL RESISTANCE OF MICROORGANISMS

GRAM-NEGATIVES: due to outer membrane and in particular to porins (e.g. *Pseudomonas* spp.)

ANTIMICROBIAL RESISTANCE OF MICROORGANISMS

MYCOBACTERIA:

VIRUSES:

e.g. *Mycobacterium tuberculosis* (cell wall lipids)

Enveloped viruses are less resistant because many disinfectants are lipid soluble or solvents (e.g. ethanol)

BIOFILM (Microbial absorption and desorption)

BIOFILM (Microbial absorption and desorption)

BIOFILM FORMATION

Five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing *P. aeruginosa* biofilm. All photomicrographs are shown to the same scale.

D. Davis - From: D. Monroe. "Looking for Chinks in the Armor of Bacterial Biofilms". PLoS Biology 5 (11, e307).

SELECTION OF DISINFECTANTS

APPLICATION TECHNIQUES

- HPLV: High Pressure Low Volume
- **2** LPHV: Low Pressure High Volume
- **B** CIP: Clean-In-Place
- Gel/Foams
- 6 Manual

CLASSIFICATION OF DISINFECTANTS ACCORDING TO THEIR ACTIVITY

HIGH ACTIVITY: effective against all microorganisms, including bacterial endospores. E.g. ethylene oxide, 2% glutaraldehyde.

MEDIUM ACTIVITY: effective against tuberculous mycobacteria and highly resistant viruses (Hepatitis viruses, rhinoviruses), non-effective against endospores. E.g. iodine tincture.

CLASSIFICATION OF DISINFECTANTS ACCORDING TO THEIR ACTIVITY

• LOW ACTIVITY: non-effective against endospores, tuberculous mycobacteria and nonenveloped viruses. If used correctly, they can kill fungi and bacterial vegetative forms. Low toxicity for humans, economical. E.g. iodophores, quaternary ammonium compounds, chlorhexidine.

CLASSIFICATION OF DISINFECTANTS ACCORDING TO THEIR ACTIVITY

Be careful! Some compounds can be used with different aims:

• DISINFECTANTS: applied to non-living surfaces;

- ANTISEPTICS: applied to living tissues;
- **B** FOOD ADDITIVES: mainly preservatives;

SURFACE DECONTAMINATING AGENTS: applied
to food surface (if allowed)

CONDITIONS THAT INCREASE THE EFFECTIVENESS OF MOST DISINFECTANTS

- Use on surfaces
- 2 Clean surfaces
- B High temperature
- Microbial cells in exponential phase
- **6** Gram-positive bacteria
- **6** No endospores
- Extended contact time

QUATERNARY AMMONIUM COMPOUNDS

<u>Good disinfectants against Gram-positives</u> (e.g. benzalkonium chloride, cetylpyridinium chloride)

- High surfactant activity (foaming capacity and detersion)
- Good disinfectant activity, very low toxicity
- **Excellent** solubility
- Stable solutions, very economical, deodorant
- Suitable for all materials
- Not very active against Gram-negatives, not effective against mycobacteria and endospores
- Low activity in presence of organic substance, soaps and hard water

QUATERNARY AMMONIUM COMPOUNDS

<u>Advantages</u>

Wetting and penetrating action **Residual activity** Deodorant Suitable for all materials Stable Can be applied manually Disadvantages Reduced activity in acid environment Low activity in hard water and in presence of organic substance Selective biocide Foaming activity

PERACETIC ACID

Strong and rapid action, wide spectrum

- (1% solution inactivates bacteria and fungi in 5 min, viruses and endospores in 30 min)
- Irreversible oxidizer
- Active at low temp but unstable at high temp
- No toxic residues
- Scarcely affected by organic substance
- Reacts with aluminium, copper, zinc, bronze, concrete Non-foaming
- Frequently used for CIP. Used also for stables.
- Used to clean the outer surface of food packaging in clean rooms.

PERACETIC ACID

<u>Advantages</u>

Rapid and intense activity Wide spectrum Effective in hard water Non-foaming <u>Disadvantages</u>

Pungent and unpleasant odour Irritating Very reactive

Unstable at high temp

POLYBIGUANIDES

Very effective against bacteria, less against fungi

- Active between pH 5.0 and 8.5
- Neutral solutions, can be applied manually
- Suitable for all materials but bronze and copper
- Incompatible with chlorine (forms gums)
- No odour
- Moderately foaming

POLYBIGUANIDES

<u>Advantages</u>

Effective against bacteria Residual activity Neutral solutions Low skin sensitisation <u>Disadvantages</u>

Low activity against fungi Inactive at alkaline pH Low activity at acid pH Inactivated by phosphates and chlorine Need accurate rinsing

CHLORHEXIDINE (biguanide)

Persistant and atoxic bactericidal

(effective against fungi, bacterial vegetative cells, some enveloped viruses BUT NOT against endospores)

Common antiseptic for skin and mucosae (e.g. mouthwash)

Together with detergents and alcohols, used in presurgery

Residual activity

Low toxicity (but irritating for conjunctiva)

Antiseptic for hand cleaning

CHLORHEXIDINE

Advantages

Residual activity Low toxicity Scarcely affected by organic substance <u>Disadvantages</u> Selective activity Irritating for conjunctiva Mainly used as an antiseptic and not as a disinfectant

GLUTARALDEHYDE

Effective sterilizer

- (2% sol. Inactivates bacteria, mycobacteria and viruses in 10 min but endospores in 3-10 hours!) Rapid and intense activity also in presence of organic substance Widespread in hospitals, less in the food industry (cost) Active at neutral or low alkaline pH Completely inactivated by amines and ammonia Deodorant
- Less irritating than formalin

GLUTARALDEHYDE

<u>Advantages</u>

Rapid and intense activity Wide spectrum Effective in presence of organic substance Deodorant Noncorrosive

<u>Disadvantages</u>

Low activity at acid pH Skin sensitisation Expensive

CHLORINE AND CHLORINE COMPOUNDS

Strong oxidizers, active also against HBV (effective also at low concentration, medium temp, neutral pH) INORGANIC: liquids (e.g. hypochlorite) or powders (e.g. chlorinated trisodium phosphate) ORGANIC: usually powders (e.g. chloramine) that produce salts in solution pH-dependant activity: formation of hypochlorous acid

(biocidal activity inversely proportional to pH)

CHLORINE COMPOUNDS

- Unstable in alkaline solutions
- Some irritate skin and damage fabric
- At high temp and acid pH, they can corrode inox steel
- Not suitable for light metals
- Versatile and economical

CHLORINE COMPOUNDS

<u>Advantages</u>

- Effective and rapid
- Wide spectrum
- Cost-effective
- Versatile

<u>Disadvantages</u>

Irritating, potentially corrosive Unstable, accidentally toxic Reduced activity in presence of organic substance Can have unpleasant odour

IODINE-BASED DISINFECTANTS

General properties

Active at acid pH (2.5-3.5) and much less at pH>5.0 At ordinary concentrations (12.5-25 ppm free iodine) are much less effective than chlorine on endospores Noncorrosive for inox steel but can corrode light metals, copper, zinc, and aluminium Can stain plastic and damage rubber (not iodine monochloride)

IODINE-BASED DISINFECTANTS

Iodine tincture

(2% or more iodine in a water-alcohol solution of potassium iodine)

Effective antiseptic

Stains fabric, materials and skin

Can damage epithelia (skin sensibilisation)
Iodophores

Made of 3 components:

iodine

Carrier (organic compound/iodine stabilizer, e.g. polymer or non-ionic surfactant)

ø acid (usually phosphoric)

Iodophores

(e.g. Betadine, Isodine)

- Water soluble, stable, slowly release iodine
- Effective antiseptics and disinfectants
- Don't stain fabric, materials and skin (but can stain plastic and teflon, and damage rubber)
- Less irritating than iodine

Iodine monochloride

(acid disinfectants with no surfactants, releasing iodine in solution)

Same antimicrobial activity as iodine

Don't stain fabric, skin and materials

No foam

Easy to rinse (e.g. in CIP)

General applications

- Presurgery
- Antisepsis (skin wounds)
- Disinfection/antisepsis in hospitals and labs
- Treatment of compatible Food Contact Surfaces (FCS)
- Beer industry (CO₂ tanks)
- CIP (iodine monochloride)

<u>Advantages</u>

Wide spectrum Active at low concentration Active in hard water Noncorrosive for inox steel Versatile

<u>Disadvantages</u>

Low activity against endospores Low activity at pH>5.0 Foam (except iodine monochloride) Usually damage plastic and rubber Unpleasant odour if overdosed

ALCOHOLS

Rapid action and evaporation (effective on bacteria and fungi BUT NOT on endospores and nonenveloped viruses) Protein denaturation and solvent for lipids (damage to membranes and virus envelope) No residues Poor antiseptic (coagulate proteins, under which bacteria can grow) Can be used in the formulation of other disinfectants to increase their activity (tincture)

ALCOHOLS

Ethanol

Recommended concentration = 70% (effective between 60 and 90%) Pure ethanol is less effective because protein denaturation requires water

<u>Isopropanol</u>

Frequently sold as alcohol in supermarkets Slightly more effective than ethanol Cheaper and less volatile than ethanol

	Germicidal Action of Various Concentrations
TABLE 7.6	of Ethanol in Aqueous
	Solution Against
	Streptococcus pyogenes

Concentration of Ethanol (%)	Time (sec)					
	10	20	30	40	50	
100	_	_	_	_	_	
95	+	· +	+	+	+	
90	+	+	+	+	+	
80	+	+	+	+	+	
70	+	+	+	+	+	
60	+	+	+	+	+	
50		-	+	+	+	
40		_				

Notes: A minus sign indicates no germicidal action (bacterial growth); a plus sign indicates germicidal action (no bacterial growth). The high-lighted area represents bacteria killed by germicidal action.

From: Tortora, Funke & Case, Microbiology, an Introduction (2002)

ALCOHOLS

Advantages

Rapid action No residues Solvent for lipids

<u>Disadvantages</u>

Selective action Poor antiseptic Inflamable

HYDROGEN PEROXIDE

<u>Effective disinfectant, poor antiseptic on open wounds</u> Very used as antiseptic both in hospitals and at home Poor antiseptic on open wounds (inactivated by catalase) However, used to irrigate deep wounds in order to provide oxygen and hamper the growth of strict anaerobes

<u>On non-living surfaces, it can be sporicide at high temp</u> Used to clean packages in aseptic packaging of foods Used to disinfect contact lenses

HYDROGEN PEROXIDE

<u>Advantages</u>

- Effective Scarse residual action Very useful to irrigate (not disinfect) deep wounds <u>Disadvantages</u>
- Poor antiseptic
- Rapid inactivation in presence of catalase

CONCLUSIONS

- Disinfection aims to eliminate undesired microorganisms
- Cleaning and Disinfection should be carried out regularly to prevent biofilm formation
- The application technique depends on several factors, such as type and level of dirt, shape and type of material

CONCLUSIONS

- The effectiveness of disinfectants is affected by instrinsic and extrinsic conditions
- O Disinfectants can have different mechanisms of action
- To select the best disinfectant for each application, we should consider advantages and disadvantages, as well as the objective of disinfection

THE IDEAL DISINFECTANT

DOES NOT EXIST

PRACTICAL HINTS FOR CLEANING

1

LIST ALL THE CONSTRUCTION MATERIALS

some plastic materials, light metals, rubber, and teflon cutting boards can be damaged by unsuitable chemicals (e.g. concentrated acids for light metals, iodine for teflon and rubber, etc.)

EVALUATE IF CLEANING WILL BE CARRIED OUT BY SPECIALIZED EXTERNAL STAFF OR BY INTERNAL WORKERS

Formation and internal audits

3

IDENTIFY PRODUCTION AREAS WITH EXTRAORDINARY CLEANING REQUIREMENTS

Special sections in the Cleaning and Disinfection Plan

4 CAREFUL EVALUATION OF THE TECHNICAL SHEETS

Investigate the function of each ingredient in cleaning formulations

5 GENERAL RULES CAN HAVE EXCEPTIONS

Peracetic acid is less stable at higher temperatures Pure ethanol is not a good disinfectant

FOOD BIOPRESERVATION (not just bacteriocins...)

MULTIPLE-HURDLES STRATEGIES FOR FOOD PRESERVATION (HURDLE TECHNOLOGIES)

BIOPRESERVATION: DEFINITION (Stiles, 1996)

BIOPRESERVATION aims to prevent the contamination and

growth of undesired microorganisms in foods, by addition of:

a) antimicrobial compounds, naturally present in foods

b) antimicrobial compounds, produced in foods after physical or

chemical stimulation, or after protective cultures addition

SINCE THE 90s, HURDLE TECHNOLOGIES HAVE BEEN CHANGING THE FOOD MARKET DRAMATICALLY

WIDESPREAD PRODUCTS WITH HIGH ADDED VALUE

OUR FOODS, BEFORE AND AFTER HURDLE TECHNOLOGIES BEFORE...

Dry snacks

NOW ALSO ...

Chilled chocolate snacks and milk slices

OUR FOODS,

BEFORE AND AFTER HURDLE TECHNOLOGIES

BEFORE...

Canned sauces

NOW ALSO ...

Chilled sauces

OUR FOODS,

BEFORE AND AFTER HURDLE TECHNOLOGIES

BEFORE...

NOW ALSO ...

Stock cubes

Gelled stock

OUR FOODS,

BEFORE AND AFTER HURDLE TECHNOLOGIES

BEFORE...

Fresh vegetables

NOW ALSO ...

Fresh-cut vegetables

ESSENTIAL OILS (OEs) AS HURDLES IN FOOD PRESERVATION

THREE MAIN GOALS:

PATHOGENS CONTROL

FOOD SPOILERS CONTROL

ANTIOXIDANT ACTIVITY

Plant-based intervention strategies for Listeria monocytogenes control in foods

A. Paparella*, A. Serio, C. Chaves López and G. Mazzarrino

Microbial pathogens and strategies for combating them: science, technology and education

Green technologies for controlling Listeria monocytogenes in foods: the combined hurdles approach

Free download from: http://www.formatex.info/microbiology4/ vol2/1230-1246.pdf

Our protocol for

EOs selection

OBJECTIVE

FIRST SCREENING

SCREENING FOR A HIGH NUMBER OF SAMPLES

MINIMUM INHIBITORY CONCENTRATION (MIC)

TIME-KILL KINETICS

DISK DIFFUSION

AGAR WELL TEST

BROTH DILUTION MICRODILUTION IN BIOSCREEN (AUTOMATIC TURBIDIMETRY)

VIABLE COUNT AUTOMATIC TURBIDIMETRY

SHELF-LIFE STUDIES

acoltà di Bioscienze e tecnologi groalimentari e ambient<u>ali</u>

IN SITU STUDIES

FOOD BIOPRESERVATION: ACTIVITIES

- 1. Mechanism of action of EOs on bacterial cells
- 2. Effect of EOs on cells physiology
- 3. Plant extracts
- 4. Chitosan
- 5. Olive mill wastewater
- 6. Ozone

Evaluation of the antimicrobial activity of Origanum vulgare OE against L.monocytogenes by 2,3,5-triphenyltetrazolium chloride

FOOD BIOPRESERVATION:

PATHOGENS CONTROL
Mechanisms of action

Oregano and thyme EOs act on cytoplasmic membrane, while cinnamon has a weaker action on L. monocytogenes cells.

Available online at www.sciencedirect.com

ScienceDirect

FOOD CONTROL

Food Control 19 (2008) 1174-1182

www.elsevier.com/locate/foodcont

Flow cytometric assessment of the antimicrobial activity of essential oils against *Listeria monocytogenes*

Antonello Paparella^{a,*}, Lorenzo Taccogna^a, Irene Aguzzi^b, Clemencia Chaves-López^a, Annalisa Serio^a, Fulvio Marsilio^b, Giovanna Suzzi^a

^a Dipartimento di Scienze degli Alimenti, Università degli Studi di Teramo, Via C.R. Lerici, 1, 64023 Mosciano Stazione, TE, Italy ^b Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, Piazza Aldo Moro 45, 64100 Teramo, TE, Italy

Received 27 September 2007; received in revised form 21 December 2007; accepted 4 January 2008

Fig. 1. Microbial subpopulations, after exposure to essential oils, evaluated by flow cytometry (dyes: carboxyfluorescein diacetate cFDA; propidium iodide PI)

Clear discrimination among viable, injured and dead cells

Quantification of injured cells is particularly interesting for food microbiologists, as this subpopulation might be critical if cell recovery becomes possible, e.g. in temperature abuse conditions during food storage.

Mechanisms of action

Flow Cytometry Applications in Food Safety Studies

Antonello Paparella, Annalisa Serio and Clemencia Chaves López

Flow cytometric assessment may provide an efficient tool to evaluate microorganism adaptation to EOs, as well as to study interactions between EOs and food ingredients, in order to define conditions which maximise EOs potential for food biopreservation.

Mechanisms of action

ORIGINAL ARTICLE

Electronic paramagnetic resonance investigation of the activity of *Origanum vulgare* L. essential oil on the *Listeria monocytogenes* membrane

A. Serio¹, M. Chiarini¹, E. Tettamanti² and A. Paparella¹

Department of Food Science, University of Teramo, Mosciano Sant'Angelo (TE), Italy
Department of Biomedical Comparative Sciences, University of Teramo, Piazza Aldo Moro, Teramo (TE), Italy

Figure 3 Order parameter (plot Si), rotational correlation time (plot rc) and weight (plot W) of three coexisting domains (d1, d2, d3) in the membrane of *Listeria monocytogenes* ATCC 7644 cells. Data obtained by computer fitting of the experimental EPR spectra of samples C (Cells exposed to 0% EO), CTw (0% EO plus 0-25% Tween 80), 0-25, 0-50, 0-75, 1-00 and 1-25% EO. The error bars were determined by the fitting program. Not (a) for samples treated in PBS; Plot (b) for samples treated in PBS and 30 mmol I⁻¹ NaNa.

Changes in membrane fluidity and order.

The cells spend energy to impair EO entrance in the membrane, at least up to a critical concentration.

Increase in Lag length of treated cells suggests a cell damage recovery.

acoltà di Bioscienze e tecnologi groalimentari e ambientali

SCALING UP FROM LAB SCALE TO IN SITU STUDIES

10 to 100-fold increase in biopreservatives %

SUCCESS DEPENDS ON BOTH MICROBIAL TARGET SENSITIVITY AND SENSORY CHARACTERISTICS OF FOODS

Generally, Gram positives are more sensitive

Contents lists available at ScienceDirect

LWT - Food Science and Technology

CrossMark

journal homepage: www.elsevier.com/locate/lwt

Application of Central Composite Design to evaluate the antilisterial activity of hydro-alcohol berry extract of Myrtus communis L.

Annalisa Serio, Clemencia Chaves-López, Maria Martuscelli, Giovanni Mazzarrino, Carla Di Mattia, Antonello Paparella*

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano Stazione, TE, Italy

Table 1

Composition of the Central Composite Design and results obtained for λ (Lag phase length in h) and A (maximum growth value as O.D. 400 nm) for the six strains tested after growth data modelling according to Gompertz equation modified by Zwietering et al. (1990).

RUN Parameters															
	NaCl (g/100 mL) pH		ME (mL/100 mL) ATCC 19114			ATCC 7644		2		3		5		7	
				λ	Α	λ	Α	λ	Α	λ	Α	λ	Α	λ	Α
1	1,50	6.50	0,156	7.79a	0.48A	7.45a	0.45A	7.50a	0.45A	9.66b	0.40A	3.99c	0,81B	7.68a	0.44A
2	0.50	6.50	0.156	7.83a	0.52A	6.51b	0.48B	6.52b	0.46B	8.22a	0.64C	6.12b	0.64C	6.03b	0.54A
3	1.50	6.50	0.078	8.00a	0.61A	6,34b	0.50B	6.08b	0.49B	9.45c	0.59A	7.32a	0.57A	7.58a	0.52B
4	0.50	6.50	0.078	7.73a	0.62A	8,27a	0.46B	6.10b	0.47B	8.56c	0.63B	6.20a	0.62B	7.55a	0.56C
5	1,50	5.50	0.156	9.62a	0.29A	4.83b	0.44B	6.77c	0.33A	10.02a	0.29A	6.09c	0.47B	8.20d	0.27A
6	0.50	5.50	0.156	9.47a	0.30A	9.08a	0.20B	8.58b	0.23B	8.30b	0.31A	6.91c	0.39C	8.46b	0.26AB
7	1.50	5.50	0.078	10.15a	0.35A	8.37b	0.28B	7.76c	0.33AB	9.65d	0.39A	7.29c	0.41C	8.64b	0.32A
8	0.50	5.50	0.078	9,31a	0.40A	6.97b	0.34B	7.09b	0.36B	10.28c	0.44A	6.36b	0.43A	7.72b	0.35B
9	1.00	6.00	0.117	9,33a	0.35A	7.08b	0.37A	7.04b	0.39A	9.37a	0.39A	6.67b	0.51B	8.34d	0.31C
10	1.00	7.00	0.117	8.18a	0.58A	6.50b	0.65B	6.51b	0.61B	10.03c	0.64B	8.09a	0.74C	8.21a	0.61B
11	1.00	5.00	0.117	12,90a	0.27A	8.06b	0.27A	11.52d	0.25A	12.31a	0.31B	11.47d	0.35B	11.02d	0.30B
12	1.00	6.00	0.195	-	-	7.26a	0.32A	7.55a	0.29A	12.41b	0.11B	-	-	9.22c	0.23A
13	1.00	6.00	0.039	8.06a	0.58A	6.88b	0.47B	6.81b	0.46B	9.77c	0.52B	6.23a	0.28C	7.4b	0.53D
14	2.00	6.00	0.117	9,89a	0.32A	8.18b	0.32A	8.48b	0.30A	9.86a	0.35A	7.24c	0.48B	8.74b	0.32A
15	0.00	6.00	0.117	8.07a	0.42A	6.56b	0.38A	6.48b	0.40A	6.73b	0.53B	6.95a	0.44C	7.31c	0.39A
16	1.00	6.00	0.117	9.50a	0.37A	7.11b	0.37A	7.21b	0.37A	9.32a	0.37A	6.44c	0.51B	7.97d	0.34A
17	1.00	6.00	0.117	9.47a	0.37A	7.05b	0.37A	7.08b	0.38A	6.64b	0.36A	7.06b	0.49B	7.98c	0.34A
Control	0.00	7.00	0.000	8.27a	0.70A	6.15b	0.72A	6.11b	0.64B	8.10a	0.66B	6.07b	0.64B	7.98a	0.73A

*ME = Myrtus communis berry extract.

Design of Experiment

for reducing

biopreservative dose

-, No growth.

Significant differences ($p \le 0.05$) in the same row are indicated by small (for λ) and capital (for A) letters.

Fig. 3. Response surface plot for maximum growth value A of L monocytogenes ATCC 19114 and strains 3 and 7 as a function of Myrtus communis berry extract (ME) and pH (NaCl was fixed at the intermediate concentration of 1.00 g/100 mL).

Additive effect between myrtle extract and pH

The outcome of this study could be particularly useful for potential industrial applications. In fact, compared with essential oils, hydro-soluble extracts do not require the presence of emulsifiers, thus facilitating applications in manufacturing environments. ME at sub-lethal concentrations was effective in reducing or containing cell growth, and therefore in reducing the risk deriving from *L. monocytogenes.* Moreover, the efficacy of very low ME concentrations, in combination with salt and pH, can be valuable to define antilisterial strategies, potentially avoiding sensory changes in foods.

> acoltà di Bioscienze e tecnologi groalimentari e ambientali

Interactive effect between myrtle extract and pH

Food Control 50 (2015) 794-803

INACTIVATION DYNAMICS: 21 EOs vs. 2 antibiotics against *S.enterica* and *L.monocytogenes*

Giovanni Mazzarrino ª, Antonello Paparella ª, Clemencia Chaves-López ª, Angelo Faberi ^b, Manuel Sergi ª, Costantino Sigismondi ª, Dario Compagnone ª, Annalisa Serio ^{a, *}

Salmonella enterica and Listeria monocytogenes inactivation dynamics

after treatment with selected essential oils

(CrossMark

Fig. 1. Antimicrobial activity of 21 Essential Oils, tetracycline and trimethoprim on Salmonella enterica (a) and Listeria monocytogenes (b) strains, according to Disk Diffusion results. Weak activity = inhibition halo \leq 12 mm; intermediate activity = inhibition halo \geq 12.1 mm and <20.0; strong activity = inhibition halo \geq 20.1 mm.

Food Control 50 (2015) 794-803

INACTIVATION DYNAMICS: MICs OF SELECTED EOs

Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils

CrossMark

Giovanni Mazzarrino ^a, Antonello Paparella ^a, Clemencia Chaves-López ^a, Angelo Faberi ^b, Manuel Sergi ^a, Costantino Sigismondi ^a, Dario Compagnone ^a, Annalisa Serio ^{a, *}

Minimum Inhibitory Concentration (MIC) (µL/mL) of selected essential oils against Salmonella enterica and Listeria monocytogenes.

Essential oils	Salmonella S1	Salmonella S4	Salmonella S.E.44/06	Salmonella S.E. 44/5/9-3	L. monocytogenes ATCC 7644	L. monocytogenes LM 4	L. monocytogenes LM 17	L. monocytogenes LM 19
Caryophillus aromaticus Cinnamomum zeylanicum	0.6aA 2.5bA	2.5aB 2.5bA	2.5aB 2.5aA	2,5aB 2,5aA	2.5aB 0.6bB	2.5aB 2.5aA	1.2aC 2.5bA	1.2aC 2.5bA
Origanum vulgare	1.2cA	1.2cA	0.6bB	1.2bA	0.6bB	1.2bA	0.6cB	0.6cB
Melaleuca alternifolia	20.0dA	20.0dA	10.0cB	20.0cA	10.0cB	10.0cB	10.0dB	10.0dB
Thymus vulgaris	5.0eA	5.0eA	2.5aB	5.0dA	5.0dA	5.0dA	5.0eA	2,5bB
Juniperus communis	>40	>40	>40	>40	>40	>40	>40	>40
Melaleuca leucadendron	>40	>40	5.0d	>40	>40	>40	>40	>40
Myrtus communis	>40	>40	5.0d	>40	>40	>40	>40	>40
Salvia officinalis	>40	>40	2.5a	>40	>40	>40	>40	>40
Salvia s darea	>40	>40	2.5a	>40	>40	>40	>40	>40

Different small letters in the same column indicate significant differences (P < 0.05) between the essential oils treatment; different capital letters in the same row indicate significant differences (P < 0.05) on oil sensitivity between the strains.

Food Control 50 (2015) 794-803

Salmonella enterica and Listeria monocytogenes inactivation dynamics () CrossMark

Giovanni Mazzarrino ^a, Antonello Paparella ^a, Clemencia Chaves-López ^a, Angelo Faberi ^b, Manuel Sergi ^a, Costantino Sigismondi ^a, Dario Compagnone ^a, Annalisa Serio ^a, ^{*}

EVOLUTION OF INACTIVATION DYNAMICS AT INCREASING EOS CONCENTRATIONS

Salmonella Derby S1

treated with

Origanum vulgare EO

Fig. 2. Growth/inhibition dynamics of Salmonella Derby S1 in presence of different concentration of Origanum vulgare essential oil, a) Growth in control conditions (no essential oil); b) 03 µL/mL EO (MIC/4); c) 06 µL/mL EO (MIC/2); d) 1.2 µL/mL EO (MIC value); e) 2.5 µL/mL EO (MIC × 2); f) 50 µL/mL EO (MIC × 4). Salmonella Enteritidis growth inhibition in liquid medium (B: BHI; BM: Modified BHI) during 48 hours after treatment with OLIVE MILL POLYPHENOLS (values in %) (Paparella A., Serio A., Chaves López C., 2012)

FOOD BIOPRESERVATION: SHELF-LIFE EXTENSION

DEVELOPMENT OF EO EMULSIONS FOR SURFACE TREATMENTS OF MEAT PRODUCTS IN CLEAN ROOMS (REAL SYSTEM)

Effect of OE-NaCl interaction on log decrease of L. *monocytogenes* in cured pork coppa

SPECIFIC MARKERS FOR SPECIFIC FOODS: SPB IN MARINE FISH

CrossMark

A survey on bacteria isolated as hydrogen sulfide-producers from marine fish

Annalisa Serio, Giuseppe Christian Fusella, Clemencia Chaves López, Giampiero Sacchetti, Antonello Paparella*

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 65023 Mosciano Stazione, TE, Italy

First of all, *Shewanella* genus has been reconsidered in the last decades, and our data support the need to deepen those studies and to define species-specific characteristics. In particular, until a few decades ago, all shewanellas producing hydrogen sulfide were identified as *S. putrefaciens*, even though some strains are not producers.

In conclusion, *Shewanella* spp. showed interesting physiological and metabolic traits *in vitro*, as it grew rapidly at 4 and 8 °C, produced TMA, H₂S and biogenic amines, and showed proteolytic activity also at low temperatures, therefore potentially being able to modify texture and sensory characteristics of finfish. Moreover, extracellular DNAse activity and the capability to grow also in presence of high salt concentrations may provide a competitive advantage and a greater adaptability, which can represent a limiting factor for the storage of both fresh and transformed fish products.

MULTIPLE-HURDLES STRATEGIES FOR SL EXTENSION IN MAP PORK AT 4°C: TOTAL PSYCHROTROPHIC COUNT OE Origanum vulgare

MULTIPLE-HURDLES STRATEGIES FOR SL EXTENSION IN MAP PORK AT 4°C: TOTAL PSYCHROTROPHIC COUNT OE Origanum vulgare + CHITOSAN 1%

EMERGING

"GREEN" TECHNOLOGIES

Surface decontamination:

Effect of surface treatments with 4% oregano EO or 4% Mirenat-N (N -lauroyl-L-arginine ethyl ester) on *L. monocytogenes* ATCC 19114 inoculated on Caciotta cheese rind, at 10°C

(Serio A., Chaves López C., Paparella A., 2012)

HIGH HYDROSTATIC PRESSURE (HHP)

HHP TREATMENT: 600 MPa for 8 minutes

HYPOBARIC PACKAGING FOR LIVE MUSSELS

Microbial Challenge studies on *Clostridium botulinum* (cooperation with ISS)

Development and validation

of new food products

Challenge study in hypobaric packed mussels: *Cl. botulinum* inoculum (6 strains: 1 A + 2 B + 2 E + 1 F) MPN – Real-Time PCR

VACUUM IMPREGNATION FOR NITRITE-FREE MEATS

End drying

Dry curingDry curingBrining underTECNOLONZA PROJECT(salt + nitrate)(salt + nitrate + lactate) pulsed vacuum (only salt)(FIT Min. Att. Prod. 2007)

120 days curing

THANKS TO OUR GROUP

- Antonello PAPARELLA Professor
- Clemencia CHAVES LOPEZ Researcher
- Annalisa SERIO Researcher
- Chiara ROSSI Junior Researcher
- Serena D'AMATO Ph.D. Student
- Francesca MAGGIO Ph.D. Student

CONCLUSIONS

APPLICATION IN REAL SYSTEMS NEEDS STRATEGIES FOR DOSE REDUCTION

Nihil ab rerum natura sine aliqua occultiora causa gigni

Pliny the Elder, Naturalis Historia, Book XXII (i)

Nothing is created by Nature without some more hidden reason

UNIVERSITÀ DEGLI STUDI DI TERAMO

Thank you for your attention!

apaparella@unite.it Facebook: Antonello Paparella Unite